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Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani)

1 Applications of our development so far

1.1 Lagrange interpolation

Lagrange interpolation is used to find the unique polynomial of degree at most n − 1,
taking given values at n distinct points. We can derive the formula for such a polynomial
using basic linear algebra.

Recall that the space of polynomials of degree at most n− 1 with real coefficients, denoted
by R≤n−1[x], is a vector space. What is the dimension of this space? What would be a
simple example of a basis?

Let a1, . . . , an ∈ R be distinct. Say we want to find the unique polynomial p of degree at
most n− 1 satisfying p(ai) = bi ∀i ∈ [n]. Recall from the last lecture that if we define g(x)
as ∏n

i=1(x− ai), the degree n− 1 polynomials defined as

fi(x) =
g(x)

x− ai
=

n

∏
j 6=i

(x− aj) ,

are n linearly independent polynomials in R≤n−1[x]. Thus, they must form a basis for
R≤n−1[x] and we can write the required polynomial, say p as

p =
n

∑
i=1

ci · fi ,

for some c1, . . . , cn ∈ R. Evaluating both sides at ai gives p(ai) = bi = ci · fi(ai). Thus, we
get

p(x) =
n

∑
i=1

bi

fi(ai)
· fi(x) .

1.2 Secret Sharing

Note that the only property of the field R we used in Lagrange interpolation, was the fact
that R is large enough to contain n distinct points a1, . . . , an. Check that the same argument
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can be used to find a polynomial of degree at most n− 1 in the space F[x] for any field F

such that |F| ≥ n. This can then be used to develop another nice application as below.

Consider the problem of sharing a secret s, which is an integer in a known range [0, M]
with a group of n people, such that if any d of them get together, they are able to learn
the secret message. However, if fewer than d of them are together, they do not get any
information about the secret. We can then proceed as follows:

• Choose a finite field Fp, with p > max(n, M).

• Choose d− 1 random values b1, . . . , bd−1 in {0, ..., p− 1}, and let Q ∈ F≤d−1
p [x] be the

polynomial
Q = s + b1x + b2x2 + ... + bd−1xd−1.

Note that the secret is Q(0).

• For i = 1, ..., n, give person i the pair (i, Q(i)).

Note that if any group of d or more people get together, they can uniquely determine the
polynomial Q by Lagrange interpolation. They can then recover the secret by evaluating
Q at 0. However, if d− 1 of them gather, then there is always a polynomial consistent with
the values they hold, and any possible value at 0. To precisely say that they learn nothing
about the secret, we we use the fact that there is exactly one polynomial consistent with the
values they hold and any given value at 0. Since for any given secret s there are exactly
pd−1 polynomials with Q(0) = s, and we chose the polynomial at random conditioned
on the secret, this means that any two secrets have the same probability of producing the
observed (d − 1)-tuple of shares. We will talk in more depth about arguments like this
when we discuss probability in the second half of the course.

2 Existence of bases in general vector spaces

We proved that any finitely-generated vector space must have a basis. Recall that a vector
space V is said to be finitely generated if there exists a finite set T such that Span (T) = V.

It turns out that general vector spaces (including infinite-dimensional ones) have bases too.
Proving this uses a fact called “Zorn’s lemma” which states that any partially-ordered set
(think of the set of linearly-independent sets of vectors, ordered by inclusion) having the
property that all totally-ordered subsets are bounded (meaning that there is some element
that is greater than or equal to all of them) must have a maximal element (an element with
no other element greater than or equal to it). In the case of linearly-independent sets of
vectors ordered by inclusion, the maximal element will be a basis. I won’t go through the
details of the argument here but feel free to think about it. Zorn’s lemma turns out to be
equivalent to the axiom of choice. (So the statement about existence of bases in general
vector spaces depends on the axiom of choice.)
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3 Linear Transformations

Definition 3.1 Let V and W be vector spaces over the same field F. A map ϕ : V →W is called a
linear transformation if

- ϕ(v1 + v2) = ϕ(v1) + ϕ(v2) ∀v1, v2 ∈ V.

- ϕ(c · v) = c · ϕ(v) ∀v ∈ V.

Example 3.2 The following are all linear transformations:

- A matrix A ∈ Rm×n (m rows, n columns) defines a linear transformation from Rn to Rm.

Note that we are using ϕA(v) = Av, where we are viewing the elements of Rm and Rn as
column vectors.

- ϕ : C([0, 1], R) → C([0, 2], R) defined by ϕ( f )(x) = f (x/2). Recall that C([a, b], R) =
{ f : [a, b]→ R | f is continuous}.

- ϕ : C([0, 1], R)→ C([0, 1], R) defined by ϕ( f )(x) = f (x2).

- ϕ : C([0, 1], R)→ C([0, 1], R) defined by ϕ( f )(x) = f (1− x).

- The derivative operator acting on R[x]. (Polynomials in x with real-valued coefficients)

Proposition 3.3 Let V, W be vector spaces over F and let B be a basis for V. Let α : B → W
be an arbitrary map. Then there exists a unique linear transformation ϕ : V → W satisfying
ϕ(v) = α(v) ∀v ∈ B.

Proof: Since B is a basis, any u ∈ V can be written in a unique way as a sum ∑v∈B avv,
where the values av are in F and only finitely many are nonzero. By the two properties of
a linear transformation, we must then have ϕ(u) = ∑v∈B av ϕ(v). Since the values ϕ(v) are
fixed for all v ∈ B, this gives the unique solution of ϕ(u) = ∑v∈B avα(v). Moreover, this ϕ
indeed satisfies the property that ϕ(v) = α(v) for all v ∈ B.

Proposition 3.3 solidifies the connection between linear transformations and matrices. We
saw that a matrix A ∈ Fm×n corresponds to a linear transformation ϕA from Fn to Fm

defined as ϕA(v) = Av. But we can also go the other way as well. Given a linear transfor-
mation ϕ : Fn → Fm, consider the standard basis B = {e1, ..., en} for Fn, where ei has 1 in
its ith coordinate and 0 in all other coordinates. By Proposition 3.3, ϕ is uniquely defined
by its effect on B, and so can be represented by the matrix A ∈ Fm×n with ϕ(ei) as its ith
column.
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Definition 3.4 Let ϕ : V →W be a linear transformation. We define its kernel and image as:

- ker(ϕ) := {v ∈ V | ϕ(v) = 0W}.

- im(ϕ) = {ϕ(v) | v ∈ V}.

Proposition 3.5 ker(ϕ) is a subspace of V and im(ϕ) is a subspace of W.

Definition 3.6 dim(im(ϕ)) is called the rank and dim(ker(ϕ)) is called the nullity of ϕ.

Proposition 3.7 (rank-nullity theorem) If V is a finite dimensional vector space and ϕ : V →
W is a linear transformation, then

dim(ker(ϕ)) + dim(im(ϕ)) = dim(V) .

Proof: Let n = dim(V) and let k = dim(ker(ϕ)). Choose a basis v1, ..., vk for the kernel
and then extend this to a basis B for V with linearly independent vectors vk+1, ..., vn (which
we can always do, as we saw in the last class). We know that

im(ϕ) = Span ({ϕ(v1), ..., ϕ(vn)}) = Span ({ϕ(vk+1), ..., ϕ(vn)}) .

So, to show that the rank is n − k, all that remains is to show that ϕ(vk+1), ..., ϕ(vn) are
linearly independent. This follows from the definition of linear transformation: if some
linear combination of ϕ(vk+1), ..., ϕ(vn) equals 0 then so does ϕ of the same linear combi-
nation of vk+1, ..., vn, meaning that this linear combination of vk+1, ..., vn lies in the kernel.
This contradicts the fact that they were all linearly independent of v1, ..., vk.

Example 3.8 Consider the matrix A which defines a linear transformation from F7
2 to F3

2:

A =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 .

- dim(im(ϕ)) = 3.

- dim(ker(ϕ)) = 4.

Remark. In the above example, ker(ϕ) is a code which can recover from one bit of error. More
generally, this is also true for the (2k − 1) × k matrix Ak where the ith column is the number i
written in binary (with the most significant bit at the top).

This code is known as the Hamming Code and the matrix A is called the parity-check matrix of the
code.
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